ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 1234567890 -

Font:
Font color:
Font size:

```
Gotham Rounded Bold
OOOOOOD
26 pt
```


ond lengths (left)

A - two shown atoms: $\quad 24 \mathrm{px}$
B - one shown atom linked
to carbon chain:
C - two hidden carbons linked
in carbon chain:
*Dashes and wedges will only adhere to

Color modes

Visualization styles

Lewis structures (expanded)
This is acetone visualized via a standard Lewis
Structure, simple and grid-like, with every atom
tructure, simple and grid-like, with every ato
and bond shown. When students are alked to
draw a Lewis Structure, use this visualization.

Condensed formula
This is acetone visualized via the "condensed formula", which takes hydrogens and reduces the bond visualization
into texts and subscripts. Certain questions in the problem into texts and subscripts. Certain questions in the problem
set may use this formula.

Skeletal structure or line structure This is how acetone looks when represented by
a line structure. Carbons and hydrogens are a line structure. Carbons and hydrogens are hidden unless they need to be shown becaus
of an associated charge, etc. Heteroatoms, or any atoms that aren't carbon or hydrogen, ar

Lewis Structures

N-((trifluoromethyl)sulfonyl)propanethioamide
An example of a larger molecule visualized as a Lewis
Structure. Every atom and bond is shown.

formal charge length: ${ }^{12 \mathrm{px}}$ formal charge width:
formal charge container width:
${ }_{30}{ }^{2 \mathrm{pxx}}$ formal
22px
distance between bond and atom:
5 px
5px
formal charge distance from atom:
5 px

$\begin{array}{ll}\text { triple bond length: } \\ \text { space between bonds: } & 24 \mathrm{px} \\ \text { 4px }\end{array}$
$\begin{array}{ll}\text { space etween bonds: } & 4 \mathrm{px} \\ \text { bond width: } \\ \text { space between triple bip }\end{array}$
space between triple bonds:
4 px
${\underset{28}{28 \mathrm{px}}}_{\min } \mathrm{mum}$ button size target:
($-18-20 p x$ atom width $+\cdots 5 p x$ on each side)

Hydrazine
distance between lone pair \& atom
space between double bonds
double bond length: 24 px
bond angles
bond angles:
(see hydronium ion below)

tert-Butanol
Here is an example of "crowding". Some of the hydrogens
are orientex in a way that disallows showing their normal structure 4 a methyl group, so it is necessary to orien
them at 5° angles to their parent carbon to avoid overlapping with adjacent hydrogens.

Hydronium ion
Accurate bond angles should be represented when there are 3 consecutive carbons
heteroatoms or less present.
formal charge distance from atom: $\quad 5 \mathrm{px}$

Notes
\qquad
\qquad
\qquad
\qquad

Condensed formula
The condensed formula takes hydrogens and reduces their atom and bond visualization into texts and
subscripts. Certain questions in the problem set may use this formula.

Condensed formula
Use the condensed formula when a
molecule consists of $3-5$ or less molecule consists of $3-5$ or less
consecutive carbons and $/$ or heteroatoms
in a chain.
 Bond angles should be accurate, and formal
charge should be displayedr at the midpoint of
the continuation of the opposing bond angles. the continuation of the opposing bond angles.

 carbon-methyl group bond length:
carbon-carbon bond length: space between double bond: $\quad 44 \mathrm{px}$ 46 px
*subscript midpoint should align with bottom
of normal text

Notes

$$
\text { Condensed formula can be used for longer molecules (up to } 5 \text { consecutive carbons/heteroatoms), but in most cases, skeletal structure should be prioritized }
$$

Methyl groups take the color of carbon (\#00000D)
can caro bonds ar

Skeletal/Line structure

The skeletal or line structure serves as a shorthand representation of a molecule's bonding and some details of its geometry. We should aim t t
follow many of the general conventions seen in this article: : hhttps://en.wikipedia.org/wiki/skeletal formula), while using the styles given here

Adenosine triphosphate (ATP)
With this example, both skeletal structure and Lewis structure formats ar
visualized. This may occur occasionally on an individual question basis.

Angled wedges
To make a seamless transition in the case where a wedge is connected to a single bond, the wedge is extended upward at an angle to
the bond. The wedge should sit on top of the bond.

Notes

- Dashes and wedges have two different sizes, 24px vs 40px lengths, depending on if they bond to a visible or hidden atom

Wedges are sometimes angled when laid over single bonds to create seamless intersections
When depicting resonance/double or triple bonds inside of carbon rings or alongside skeletal vertexes, the length of the bond will will be shorter to avoid edge crowding

Scaling 2D structures

iPhone X actual size

$\underset{\substack{\text { bond width } \\ \text { 3px } \\ \text { 7n }}}{\text { 720 }}$

$\underset{\substack{\text { bond width: } \\ \text { fopx } \\ \text { font size: }}}{\mathbf{3 0 \%}}$

Note: Don't render fonts smaller than 8pt

